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Abstract. Machine learning (ML) models have been adopted for ap-
plications with high-stakes decision-making like healthcare and criminal
justice. To ensure trustworthy ML models, the new AI regulations (e.g.,
AI Act) have established several pillars such as privacy, safety and fair-
ness that model design must take into account. Designing such models
requires an understanding of the interactions between fairness defini-
tions with different notions of privacy. Specifically, the interaction of
group fairness (i.e., protection against discriminatory behaviour across
demographic subgroups) with attribute privacy (i.e., resistance to at-
tribute inference attacks—AIAs), has not been comprehensively stud-
ied. In this paper, we study in depth, both theoretically and empirically,
the alignment of group fairness with attribute privacy in a blackbox set-
ting. We first propose AdaptAIA, which outperforms existing AIAs on
real-world datasets with class imbalances in sensitive attributes. We then
show that group fairness theoretically bounds the success of AdaptAIA,
which depends on the choice of fairness metrics (e.g., demographic parity
or equalized odds). Through our empirical study, we show that attribute
privacy can be achieved from group fairness at no additional cost other
than the already existing trade-off with utility. Our work has several
implications: i) group fairness acts as a defense against AIAs, which is
currently lacking, ii) practitioners do not need to explicitly train models
for both fairness and privacy to meet regulatory requirements, iii) Adap-
tAIA can be used for blackbox auditing of group fairness.

1 Introduction

Machine learning (ML) models have been adopted for several high-stakes decision-
making applications, such as criminal justice and healthcare. To govern this mas-
sive deployment of ML models, new AI regulations have highlighted the design
of trustworthy models. Trustworthy models rely on several pillars such as pri-
vacy, safety, fairness [20, 18]. The design of models ensuring all these (potentially
conflicting) properties remains an open challenge and requires an understanding
of the relationship among them.

For instance, to avoid models susceptible to discriminatory behaviour [25],
group fairness algorithms train an ML model optimized for a fairness metric (e.g.,
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equalized odds, demographic parity) to ensure equitable behaviour across differ-
ent demographic subgroups [35, 1]. This optimization ensures the conditional
independence between the model’s predictions and sensitive attributes [33, 17].
However, training with group fairness may conflict with different notions of pri-
vacy [10]. For instance, group fairness increases the susceptibility to membership
inference attacks [6] and conflicts with differential privacy [8, 13]. However, there
is limited literature on the interaction of group fairness with privacy of sensitive
attributes, as measured using attribute inference attacks (AIAs) where an adver-
sary infers sensitive attributes (e.g., Race and Sex) from model predictions [15, 9,
32, 29, 23, 24]. Ferry et al. [12] indicate a conflict in a restricted setting: fair mod-
els are susceptible to AIAs when adversary knows the fairness metric that the
model was optimized on. This assumption is unlikely in practice since companies
do not reveal their proprietary training procedures. Hence, the interaction in a
blackbox setting where the adversary has no knowledge about the target model
is more realistic, but missing in the literature. On the contrary, Zhang et al. [36]
only speculate the alignment of group fairness with attribute privacy without
any evaluation. Hence, it is still unclear how different fairness metrics influence
the interaction [36]. Despite the GDPR’s emphasis on safeguarding individuals
against attribute inference, this specific privacy risk has not been thoroughly
evaluated concerning its trade-off with fairness in ML models.

To address this lack of understanding, we study the following research ques-
tion: How does group fairness interact with attribute privacy? We for-
mally define attribute privacy as the indistinguishability in the model’s predic-
tions for different sensitive attribute values [36]. Empirically, we evaluate this by
checking whether the AIAs are close to random guess. Intuitively, the conditional
independence of sensitive attributes on using group fairness should be equivalent
to indistinguishability in model predictions. Since this meets the requirement for
attribute privacy, we conjecture that there is alignment.

Our goal is to validate this conjecture by examining whether the success of
AIAs is close to random guessing, which would imply attribute privacy and in-
dicate alignment with group fairness. However, this is challenging. First, none of
the current AIAs account for real-world datasets with significant class imbalance
in sensitive attributes making them ineffective in practice. Second, group fairness
algorithms can either output soft labels (probability that an input belongs to
different classes) as seen for adversarial debiasing (AdvDebias) [35, 22] or hard
labels (most likely class from soft labels) as seen in exponentiated gradient de-
scent (EGD) [1]. We have to design AIAs for both settings. We address these by
proposing a state-of-the-art AIA, AdaptAIA, to measure attribute privacy. We
theoretically analyze the bounds of different fairness metrics to protect against
AIAs, and validate these bounds through an extensive experimental analysis
using several state-of-the-art datasets.
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2 Background and Related Work

2.1 Machine Learning Classifiers

Training. An ML classifier is a function fθtrg (omit θ for simplicity) parameter-
ized by θ that map inputs with corresponding classification labels. θ is updated
using a training dataset (Dtr) with the objective to minimize the loss incurred
on predicting the classification label for inputs from Dtr. We remove sensitive
attributes such as Race or Sex from Dtr to censor them [29]. Consequently, ftrg
is trained on non-sensitive attributes.

Formally, consider a probability space (Ω, T ,P), measurable spaces (E,U),
({0, 1},P({0, 1})) and ([0, 1],B) where B is the Borel tribe on [0, 1]. We de-
fine random variables X for the input data, Y for the classification labels and
S for the sensitive attributes: X : (Ω, T , P ) −→ (E,U),, Y : (Ω, T , P ) −→
({0, 1},P({0, 1})),, and S : (Ω, T , P ) −→ ({0, 1},P({0, 1})). Then, ftrg is a
measurable function ftrg : (E,U) −→ ([0, 1],B) which is used to build the statis-
tic approaching Y by updating the parameters θ on Dtr. The prediction of ftrg
on X is a random variable: Ŷh = 1[τ,1] ◦ Ŷs where Ŷs = ftrg ◦X and τ ∈ [0, 1].
Inference. Once training is completed, X(ω) is passed to ftrg to obtain a pre-
diction score ftrg(X(ω)) (aka soft labels). The attributes during inference, are
sampled from an unseen test dataset Dte disjoint from Dtr to evaluate how well
ftrg generalizes. We refer to ftrg’s final predictions and intermediate outputs
as model observables. Sensitive attributes, although available for different data
records, play no role in training or inference. They are reserved solely for design-
ing and evaluating attacks.

2.2 Group Fairness

Generally, data records in the minority subgroup, identified by some sensitive
attribute (e.g., Race or Sex), face unfair prediction behaviour compared to data
records in the majority subgroup. For instance in criminal justice, Race plays a
non-negligible role in predicting the likelihood of them re-offending [3]. Group
fairness algorithms add constraints during training such that different subgroups
(i.e., S : Ω → {0, 1}) are treated equally (e.g., AdvDebias [35] and EGD [1]).
S is either Sex or Race (i.e., S(ω) is 0 for woman and 1 for man, or 0 for
black and 1 for white). There are different definitions of group fairness which
have been introduced in prior work. We discuss two well-established definitions:
demographic parity (DemPar) and equalized odds (EqOdds).

Definition 1. Ŷh satisfies DemPar for S if and only if: P (Ŷh = 0|S = 0) =
P (Ŷh = 0|S = 1).

DemPar ensures that the number of correct predictions is the same for each
subgroup. However, this may result in different false positive (FPR) and true
positive rates (TPR) if the true outcome Y varies with S [11]. EqOdds is a
modification of DemPar to ensure that both TPR and FPR are the same for
each subgroup [17].
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Definition 2. Ŷh, classifier of Y , satisfies EqOdds for S iff: P (Ŷh = ŷ|S =
0, Y = y) = P (Ŷh = ŷ|S = 1, Y = y) ∀(ŷ, y) ∈ {0, 1}2.

We consider two fairness algorithms: (a) adversarial debiasing (AdvDebias) [22,
35] and (b) exponentiated gradient descent (EGD) [1]. AdvDebias achieves fair-
ness by training ftrg to have indistinguishable output predictions in the presence
of a discriminator network fdisc. fdisc infers S corresponding to a target data
point given ftrg ◦X. ftrg is then trained to minimize the success of fdisc. Ad-
vDebias outputs soft labels (i.e., a probability attached to each value of the
sensitive attribute). EGD solves an under-constraint optimization problem to
find a collection of optimal measurable functions t0, · · · , tN−1 and threshold
(τ0, · · · τN−1) ∈ [0, 1]N . They are used to create the statistic for predictions Ŷh
to estimate Y . A random variable I : Ω → {0, · · · , N − 1} selects one of the
measurable functions and generates a randomized classifier: Ŷh = 1[τI ,1] ◦ tI ◦X.
EGD can satisfy different fairness constraints (e.g., DemPar or EqOdds). EGD
outputs hard labels (i.e., a binary assignment to the sensitive attribute).

2.3 Attribute Privacy and Inference Attacks

Attribute privacy has been previously defined by Zhang et al. [36] for databases
using Pufferfish framework [21, 30]. Attribute privacy is the indistinguishabil-
ity in model predictions for different values of sensitive attributes. Formally, it
bounds the ratio of distribution of mechanism output conditioned on different
values of sensitive attributes. Their definition was not designed for ML, but we
can adopt it for ML by considering distribution of model predictions and adapt
it for attribute privacy of individual data records.

However, this raises a question on how to verify whether a model satisfies
attribute privacy? To this end, we take inspiration from the literature on audit-
ing differential privacy [28], we can check if a model satisfies differential privacy
by distinguishing between models trained on adjacent datasets (referred to as
“Differential Privacy Distinguishability”). Similarly, we present attribute privacy
distinguishability by which we distinguish between model inputs for different
values of sensitive attributes. A specific variant of this distinguishing test are
AIAs which can be empirically evaluated. AIAs constitute a privacy risk as Adv
learns something about the inputs which would be impossible to learn without
access to ftrg. This differentiates between a privacy risk and simple statistical
inference [7]. Hence, we can empirically measure attribute privacy using the re-
sistance to AIAs which exploit distinguishability in ftrg(X) for different values
of sensitive attributes. Specifically, ftrg satisfies attribute privacy if the success
of AIA is random guess. Using AIAs, Adv exploits model observables (e.g., pre-
dictions) and background information to infer the specific value of a sensitive
attribute corresponding to an input [15, 9, 32, 29, 23, 24]. We assume Adv has
access to auxiliary data Daux which is sampled from the same distribution as
Dtr, a standard assumption across all AIAs. Based on Adv’s knowledge, AIAs
can be categorized into imputation-based and representation-based attacks.
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Imputation-based attacks assume Adv has access to non-sensitive attributes
and background information (e.g., marginal prior over sensitive attribute and
confusion matrix) in addition to model’s predictions. Fredrikson et al. [15], Yeom
et al. [32] and Mehnaz et al. [24] assume that S is part of the input of ftrg and the
targeted data point belongs to Dtr. Fredrikson et al.[15] and Mehnaz et al.[24]
for a targeted data point, compute ftrg for different values of the sensitive at-
tribute to find the most likely one. Yeom et al. [32] predict S using the output
of a membership oracle or assuming it follows some distribution. However, these
attacks perform no better than data imputation and do not pose an actual pri-
vacy risk [19]. Jayaraman and Evans [19] propose a whitebox AIA which is a
privacy risk in the setting where Adv has limited knowledge. We omit this work
due to difference in threat model. Representation-based attacks, in turn, ex-
ploit the distinguishability in model observables for different values of sensitive
attributes [29, 9, 23]. For instance, the distribution of ftrg ◦ X for S =males is
different from S =females. Song et al. [29] / Mahajan et al. [9] assume that S
is not in the input. Adv only observes ftrg ◦X. Adv trains an ML attack model
fatt to map the output predictions ftrg(X(Ω)) to S(Ω). Malekzadeh et al. [23]
assume that Adv can actively introduce a “backdoor” and train ftrg to explicitly
encode information about S in ftrg ◦X. We omit comparison with Malekzadeh
et al. [23] due to difference in threat model and use Song et al. [29] and Mahajan
et al. [9] as our baselines.

Interactions between privacy and fairness. Chang et al. [6] show that
applying group fairness constraints increases the susceptibility to membership
inference attacks, particularly affecting minority subgroups. Further, the defini-
tion of individual fairness is a generalization of differential privacy [11]. However,
differential privacy and group fairness are at odds indicated by a performance
discrepancy between minority and majority subgroups [4, 26, 14]Song et al. [29]
consider a setting where the model is split into a local on-device and a remote
component. Hence, Adv has access to some intermediate (censored) represen-
tation of the model. They claim that fairness-based censoring of intermediate
layer model representation but assuming Adv has access to non-censored layers.
But given access to only censored layers, their AIAs are not successful which
supports our observation.

3 Problem Statement

Our goal is to comprehensively understand the relation between group fairness
and attribute privacy and present tools for further analysis. Intuitively, group
fairness ensures the conditional independence of sensitive attributes. This should
be equivalent to indistinguishability in model predictions. To validate this, we
present an illustration using CENSUS dataset showing the distribution of output
predictions for Race and Sex in Figure 1. We see that training with fairness con-
straints results in indistinguishability. Hence, we conjecture that group fairness
aligns with attribute privacy by ensuring indistinguishability in the predictions
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Fig. 1. Group fairness ensures conditional independence of model predictions with
sensitive attributes, which is equivalent to indistinguishability in their predictions.
Hence, this should satisfy attribute privacy.

for different values of sensitive attributes. However, to effectively validate this,
we need to address two other challenges:

C1 Accounting for Class Imbalance : We evaluate group fairness algo-
rithms against AIAs. If the success of AIAs is a random guess, it indicates that
attribute privacy is satisfied. However, none of the current AIAs in literature
are effective as they fail to account for real-world datasets with significant class
imbalance in sensitive attributes. For instance, the fraction of males and whites
in different datasets are 68% and 90% (CENSUS), 81% and 51% (COMPAS), 53%
and 36% (MEPS), and 78% and 96% (LFW). We have to design AIAs to account
for this class imbalance to make them effective.

C2 Accounting for Soft/Hard Labels: Group fairness algorithms can
output either soft labels (i.e., (probability that an input belongs to different
classes) or hard labels (i.e., most likely class from soft labels) and we have to
design AIAs for both settings.

3.1 Threat Model

Adv’s Knowledge. We assume a blackbox Adv with no knowledge of ftrg’s
parameters or architecture. Adv can query ftrg and obtain corresponding pre-
dictions as seen in ML as a service. Additionally,Adv has access toDaux, sampled
from the same distribution as Dtr, which is split into two disjoint datasets: Dtraux
and Dteaux to design and evaluate the attack respectively. This strong assumption
aligns with prior works to favor Adv [9, 29, 32].
Attack Methodology. Adv first queries ftrg using X ′(ω) from Dtraux to ob-
tain ftrg(X ′(ω)). Adv then trains fatt to map ftrg(X ′(ω)) to S′(ω). Once fatt is
trained, Adv performs the attack which is evaluated on inputs from Dteaux. We
present an overview in Figure 2. Depending on whether ftrg outputs hard or
soft labels, we identify the following settings: TM1 (hard labels) Adv builds a
statistic Ŝ to infer S: Ŝ = fatt ◦ Ŷh ◦X; TM2 (soft labels) Adv builds a statistic
Ŝ to infer S: Ŝ = 1[υ,1] ◦ fatt ◦ Ŷs ◦X. Here, υ ∈ [0, 1] is a threshold which can
be adapted to improve the attack. Note that in both cases, Adv only uses ftrg’s
outputs as input to fatt to infer the value of sensitive attributes.
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ftrg

Dtr : (X,Y )

X ′(ω)

Input

ftrg(X
′(ω)) fatt S(ω)

Daux : (X ′, Y ′, S′)

Train Train

Fig. 2. Adv wants to infer sensitive attributes for an input given its prediction. Adv
trains fatt on Daux to map ftrg(X ′(ω)) to S′(ω). Once trained, Adv only uses ftrg’s
outputs as input to fatt to infer sensitive attributes. red indicates accessible by Adv.

3.2 Limitations of prior work

Ferry et al. [12] show that sensitive attributes can be inferred from a fair model
under the strong assumption that the fairness metrics is known to Adv. However,
companies are unlikely to release such proprietary information. We consider a
practical threat model where Adv has no knowledge of ftrg. Zhang et al. [36]
define attribute privacy as indistinguishability across sensitive subgroups using
Pufferfish privacy framework but do not not focus on protecting sensitive at-
tributes for individual data records. Further, their definitions and mechanisms
to achieve attribute privacy are for databases and not ML models. Finally, they
speculate the alignment of group fairness and privacy but without any evalua-
tion. It is not clear how different fairness metrics impact the interaction. Hence,
none of the prior works have comprehensively studied this interaction. Our study
provides a better understanding, both empirically and theoretically, of the rela-
tionship between attribute privacy and group fairness as well as the impact of
fairness measures on interactions.

4 Interaction: Theoretical Analysis

By theoretically analyzing the bounds on AdaptAIA, we present tools to an-
alyze the impact of different fairness algorithms (e.g., EGD and AdvDebias)
and metrics (e.g., DemPar and EqOdds) on the alignment. This was missing
in Zhang et al. [36].

4.1 EGD

Training a model with EGD outputs hard labels and falls in TM1. For EGD,
we first consider DemPar in TM1 and then EqOdds in TM1 and by conse-
quence in TM2, to show how different fairness metrics can impact the overall
interaction. We use the definitions of fairness metrics to find an upper bound on
the attack accuracy of AIA.

Theorem 1. Maximum attack accuracy achievable by AIA in TM1 is equal to
1
2 (1 + DemPar-level of ftrg).
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Hence, we obtain a bound for AIA in TM1 without any conditions on ftrg
or datasets. Additionally, we observe that DemPar-level = 0. Consequently, if
ftrg satisfies DemPar then no fatt will perform better than a random guess.
Hence, EGD+DemPar satisfies attribute privacy.

Theorem 2. If Ŷ satisfies EqOdds for Y and S then the balanced accuracy of
AIA in TM1 is 1

2 iff Y is independent of S or Ŷ is independent of Y .

Those two conditions are unlikely to happen in practice. The condition of
Y being independent of S was not observed for our datasets. We evaluate
|P (Y = 0|S = 0) − P (Y = 0|S = 1)| where a high value indicates Y and S
are dependent. For Race and Sex, we found these values to be 0.05 and 0.27
(COMPAS), 0.20 and 0.13 (CENSUS) and 0.07 and 0.13 (MEPS) respectively. Fur-
ther, the independence between Ŷ and Y means that ftrg has random guess
utility. Hence, in practice, EqOdds aligns by reducing the risk to AIAs but
does not perfectly align as seen in DemPar by reducing AIAs to random guess-
ing. The choice of fairness metric is important for EGD for perfect
alignment. We now only consider EGD+DemPar in the rest of the paper.

4.2 AdvDebias

Training ftrg with AdvDebias, outputs soft labels and hence falls in TM2.
We now show that using AdvDebias bounds the balanced attack accuracy to
random guess.

Definition 1 of DemPar can be written synthetically as the following prop-
erty: PŶ ,S = PŶ ⊗ PS . Where PŶ ⊗ PS is the product measure defined as the
unique measure on P(Y)×P(S) such that ∀y ∈ P(Y)∀s ∈ P(S) PŶ ⊗ PS(y ×
s) = PŶ (y)PS(s). This is equivalent to definition 1 for binary labels and sensitive
attribute but more general because when Ŷ is not binary as in soft labels, this
new definition is well defined.

Definition 3. Ŷ satisfies DemPar for S if and only if: PŶ ,S = PŶ ⊗ PS.

This definition is the same as the statistical parity introduced for fair regres-
sion [2]. Note that we can not derive a quantity similar to DemPar-level with
this definition but this extended DemPar assures indistinguishably of the sen-
sitive attribute when looking at the soft labels. We have the following theorem:

Theorem 3. The following propositions are equivalent: “Ŷs is independent of
S” and “Balanced accuracy of AIA in TM2 is 1

2 ”

These results suggest that AdvDebias, by imposing PŶ ,S = PŶ ⊗PS , reduces
susceptibility to AIA in TM2. Extended demographic parity, a notion for soft
labels implies DemPar for hard labels whatever the threshold is.
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5 Interaction: Empirical Analysis

5.1 Experimental Setup

Datasets.We consider four real-world datasets covering different domains: crim-
inal justice (COMPAS), income prediction (CENSUS), healthcare (MEPS), and face
recognition (LFW), to illustrate the effectiveness of the proposed AIAs. These
have been used as benchmarks for privacy [29, 24, 9] and fairness [25]. In all
datasets, we consider Race and Sex as binary sensitive attributes to be inferred.
CENSUS comprises 30,940 data records with 95 attributes about individuals from
1994 US Census data. The attributes include marital status, education, occu-
pation, job hours per week among others. The classification task is to estimate
whether an individual makes an income of 50k per annum. COMPAS is used for
commercial algorithms by judges and parole officers for estimating the likeli-
hood of a criminal re-offending using seven attributes. The classification task
is whether a criminal will re-offend or not, and contains 6,172 criminal defen-
dants in Florida. MEPS contains 15,830 records of different patients using medical
services by capturing the trips made to clinics and hospitals. The classification
task is to predict the utilization of medical resources as ’High’ if the sum of the
number of office based visits, outpatient visits, ER visits, inpatient nights and
home health visits, is greater than ten. LFW is an example for face recognition
systems and has 8,212 images of people with the classification task to predict
whether their age is >35 years.

We use 80% of the dataset as Dtr and the remaining 20% for Dte. We use
Dte as Daux and ensure that the distribution of S is uniform between them. We
use 80% of Daux for training fatt and 20% for evaluation of the attack.
Model Architectures:We use neural networks with four hidden layers with the
following dimensions: [32, 32, 32, 32] and ReLU activation functions. We train
the models using cross validation where each split is done five times without any
overlap. ftrg is trained and evaluated five times and fatt is trained and validated
ten times. We check for statistical significance for the results (i.e., differences in
results are significant if p-value <0.05). Due to their widespread use, we indicate
results for neural networks. But, we also evaluated using random forest and we
omit them as the results are similar to neural networks.
Metrics.We use standard classification accuracy between prediction and ground
truth labels to evaluate ftrg’s utility. To evaluate AIA success, we note that
accuracy is misleading with class imbalance. Hence, we use balanced accuracy
which is the average of the proportion of correct predictions of each class of
the sensitive attribute individually: 1

2 (P (Ŝ = 0|S = 0) + P (Ŝ = 1|S = 1)). For
fairness, we use DemPar-level given by |P (Ŷ = 0|S = 0) − P (Ŷ = 0|S = 1)|
and a value close to zero indicates fairness.
Baselines. To evaluate the impact of group fairness on attribute privacy, we
compare the attack success of AdaptAIA with and without using group fairness
(the former case is referred to as Empirical while the latter is referred to as
Baseline). For classifiers with fairness algorithms that output hard labels, we
also indicate the theoretical bound (referred to as Theoretical).
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5.2 AdaptAIA: Adaptive Thresholding

We first design AdaptAIA to address the two challenges (C1 andC2) from Sec-
tion 3. AdaptAIA uses an adaptive threshold over fatt to account for class im-
balance in sensitive attributes, typical of real-world datasets [16, 27]. Also, Adap-
tAIA is designed for both soft (AdaptAIA-S) and hard labels (AdaptAIA-H).

AdaptAIA-S. Recall from Section 3 that real-world datasets have significant
class imbalance in sensitive attributes. We conjecture that this skews ftrg’s pre-
dictions, and none of the existing AIAs are effective. Hence, we have to adapt
the threshold over fatt’s soft labels to correctly infer sensitive attributes instead
of the default threshold of 0.5 as in prior AIAs [29, 9]. The use of an adaptive
threshold has shown to improve the utility of a classifier [16, 27, 5]. However,
none of the prior AIAs account for this.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Optimal upsilon
upsilon = 0.5
Random guess

Fig. 3. Using υ∗ can lower FPR to infer sensitive attributes.

Adv optimizes the threshold υ∗ on Dtraux which is later fixed during the
attack on Dteaux. We compute υ∗ to balance TPR and FPR. Ideally, a per-
fect attack would result in no FPR and perfect TPR and Adv’s goal is to
design an AIA to approach this optimal value. Formally, υ∗ ∈ [0, 1] where
υ∗ = argminυ(1−TPRυ)2 +FPR2

υ. For illustration purposes, we plot the ROC
curve to infer Race in Figure 3. We observe that υ∗ results in lower FPR result-
ing in a more confident attack and does not correspond to the default threshold
of 0.5 used in prior AIAs [29, 9].

AdaptAIA-H. In TM1, it is not necessary to train fatt. Instead, we consider
a set of functions from {0, 1} to {0, 1} containing four elements: x 7→ 0, x 7→ x,
x 7→ 1− x, and x 7→ 1. Instead of finding υ∗ as in AdaptAIA-S, here, we opti-
mize the attack by finding the function which gives the best balanced accuracy
on Dtraux. This function is fixed during the attack on Dteaux.

Evaluation. For TM1, we use a neural network over hard labels as our baseline
and then compare with AdaptAIA-H. For TM2, we consider the attacks by
Song et al. [29]/Mahajan et al. [9] as the state-of-the-art baselines which use the
default υ = 0.5 over fatt’s predictions. We then compare this with AdaptAIA-S.
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Table 1. AdaptAIA-H and AdaptAIA-S outperform their respective baselines. We
report attack accuracy over ten runs.

TM1
Dataset Baseline (υ=0.50) AdaptAIA-H

Race | Sex Race | Sex
CENSUS 0.50 ± 0.00 | 0.50 ± 0.00 0.56 ± 0.01 | 0.58 ± 0.01
COMPAS 0.62 ± 0.03 | 0.50 ± 0.00 0.62 ± 0.03 | 0.57 ± 0.03
MEPS 0.51 ± 0.01 | 0.55 ± 0.02 0.53 ± 0.01 | 0.55 ± 0.01
LFW 0.59 ± 0.00 | 0.64 ± 0.15 0.61 ± 0.11 | 0.78 ± 0.05

TM2
Dataset Baseline (υ=0.50) AdaptAIA-S

Race | Sex Race | Sex
CENSUS 0.50 ± 0.02 | 0.56 ± 0.04 0.61 ± 0.02 | 0.68 ± 0.01
COMPAS 0.62 ± 0.03 | 0.50 ± 0.00 0.62 ± 0.03 | 0.57 ± 0.03
MEPS 0.52 ± 0.02 | 0.55 ± 0.02 0.60 ± 0.02 | 0.62 ± 0.02
LFW 0.50 ± 0.10 | 0.77 ± 0.07 0.61 ± 0.10 | 0.79 ± 0.05

We present the comparison of the baseline with AdaptAIA-H and AdaptAIA-
S in Table 1. For all datasets, we see that AdaptAIA-H and AdaptAIA-S are
significantly better on average than their baselines. Having successfully addressed
3 and 3, we use them to evaluate the alignment with two well-established group
fairness algorithms: EGD and AdvDebias.

5.3 EGD against AdaptAIA-H

To evaluate alignment of EGD+DemPar with attribute privacy, we compare
the difference in attack accuracy with and without EGD+DemPar against
AdaptAIA-H (Figure 4). AdaptAIA-H has significantly lower effectiveness
(approaching random guessing, 50%) when utilizing EGD+DemPar compared
to the Baseline. Additionally, we note that the theoretical bound on attack ac-
curacy matches with the empirical attack accuracy. The theoretical accuracy is
equal to the empirical accuracy when the values are > 1

2 . But DemPar-level ≥ 0
implies that (1 + DemPar-level) ≥ 1

2 . Hence, we observe that the theoretical
accuracy is not equal to the experimental when fatt’s attack accuracy is random
guess (under 1

2 ). This happens when ftrg nearly follows DemPar where Adv’s
fatt is optimal on Dtr but worse than random guess for Dte.

Sanity Check for Fairness and Trade-off with Utility. We also confirm
if EGD+DemPar indeed results in a fair model and measure the correspond-
ing decrease in utility. For fairness, we report DemPar-level with and without
EGD+DemPar. For Race, DemPar-level decreases from 0.12 to 0.01 (CENSUS),
0.24 to 0.13 (COMPAS), 0.26 to 0.16 (LFW), and 0.05 to 0.01 (MEPS). For Sex,
DemPar-level decreases from 0.17 to 0.02 (CENSUS), 0.14 to 0.07 (COMPAS),
0.57 to 0.11 (LFW), and 0.10 to 0.00 (MEPS). Hence, EGD+DemPar is effective
in achieving group fairness indicated by DemPar-level closer to zero on using
EGD+DemPar. For utility, we report the difference in ftrg’s accuracy on using
EGD+DemPar: 15% (CENSUS), 5% (MEPS), ∼13% (COMPAS), and LFW (∼6%).
This trade-off with the utility of ftrg is inherent to training with EGD [34, 31].
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Fig. 4. For AdaptAIA-H, we observe that EGD reduces the attack accuracy to ran-
dom guess (∼50%).

5.4 AdvDebias against AdaptAIA

To evaluate the alignment of the fairness constraint imposed by AdvDebias
with attribute privacy, we compare the attack success of AdaptAIA-S and
AdaptAIA-H on ftrg with and without AdvDebias (Figure 5). Results show
that for all datasets AdvDebias reduces the attack accuracy close to random
guess (i.e., 50%) compared to Baseline. This suggests that AdvDebias is
aligned with attribute privacy, and acts as a defense against AdaptAIA. Fur-
ther, the theoretical bound for AdaptAIA-H for DemPar from Section 4.2
matches with the empirical results.

Sanity Check for Fairness and Trade-off with Utility. We confirm that
the resulting model is indeed fair and measure the corresponding decrease in
utility. For fairness, we measure DemPar-level with and without training ftrg
with AdvDebias. ftrg with AdvDebias has significantly lower DemPar-level
for both Race and Sex which is closer to zero as compared to Baseline. For Race,
DemPar-level decreases from 0.12 to 0.02 (CENSUS), 0.24 to 0.05 (COMPAS), 0.26
to 0.12 (LFW), and 0.05 to 0.02 (MEPS). For Sex, DemPar-level decreases from
0.17 to 0.02 (CENSUS), 0.15 to 0.05 (COMPAS), 0.57 to 0.05 (LFW), and 0.10 to
0.04 (MEPS). Hence, AdvDebias is effective for group fairness. For utility, we re-
port the difference in ftrg’s accuracy with AdvDebias: ∼13% (CENSUS), ∼17%
(COMPAS), ∼8% (MEPS), and ∼16% (LFW). Hence, there is a significant decrease
in utility but this trade-off with utility is inherent to AdvDebias [35, 37].

6 Conclusion

This paper shows that there are no conflicts between group fairness and the
specific notion of attribute privacy, which is lacking in the literature. Specifically,
through an extensive empirical evaluation and theoretical guarantees, we show
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Fig. 5. For both AdaptAIA-S and AdaptAIA-H, AdvDebias reduces the attack
accuracy to random guess (∼50%). For AdaptAIA-H, the theoretical bound on attack
accuracy matches with the empirical results.

that group fairness imposed through the use of AdvDebias and EGD satisfying
DemPar is aligned with attribute privacy. This alignment means that ensuring
group fairness also ensures a protection against the attribute inference attack.
However, ensuring fairness remains at the cost of model utility. To perform our
extensive evaluation, we also propose new AIAs which outperform prior works.
Finally, we also theoretically analyze how different fairness metrics bound AIAs.

We focus on binary sensitive attributes. However, for AdaptAIA-S, the fatt
can be also trained to learn to infer non-binary attributes. For AdaptAIA-H,
while considering non-binary attributes is reasonable for small values of classes
and attributes, efficiently finding functions for large values is left as future work.
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