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ABSTRACT 
In the last decade, Battery Electric Vehicles (BEV) have been detected as a way to decrease greenhouse 
gases emission related to road transportation. Still, this technology faces several problems to break 
through the current automotive market because of the poor autonomy compared to ICE (Internal 
Combustion Engine) vehicles and of the average cost. These two issues are highly influenced by the 
design and the operation of the vehicle thermal management system. Auxiliary loads, heating and 
cooling demand can drastically decrease the BEV autonomy but also electric components lifetime 
because of inefficient cooling/heating resulting in improper operating temperature. Extensive scientific 
work has been performed to optimise the Vehicle Thermal Management System (VTMS) for 
electric/hybrid cars. However, the application of the found results or developed methodologies to 
Medium Duty Electric Vehicles (MDEV) has only been scarcely discussed so far. Hence, this paper 
proposes an insight on the scientific issues to be addressed to achieve an optimal design of MDEV 
thermal management system.   
 
Keywords: Medium duty electric vehicles, thermal management, design optimisation, control 

optimisation 

Abbreviations 
 
GHG Green House Gas 
EV Electric Vehicle 
MDV Medium Duty Vehicle 
MDEV Medium Duty Electric Vehicle 
ICE Internal Combustion Engine 
BEV Battery Electric Vehicle 
VTMS Vehicle Thermal Management System 
COP Coefficient of Performances 
PCM Phase Change Materials 
HVAC Heating Ventilation and Air Conditioning 
MPC Model Predictive Control 
TCO Total Cost of Ownership      
 
1. INTRODUCTION 

Light commercial trucks and passenger cars account for around 16% of total greenhouse gases emissions 

in Europe [1] so that in EU long term strategies for climate neutrality, the transport sector has to achieve 

a 30% reduction of its greenhouse gases (GHG) emissions by 2030 and 60% by 2050. In addition, 
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constraints on vehicles dedicated to urban applications (delivery services, refuse collections, etc.) are 

becoming increasingly severe resulting in two major issues for Medium Duty Vehicles1 (MDV) 

manufacturers: 

1. Access to urban centres in order to perform the services: in the medium term, current diesel 

vehicles will no longer be authorized to drive in city centres. 

2. The economic profitability of the solutions: the alternative solutions offered must have a user 

cost and a purchase cost ensuring the viability of transport companies. 

Electrification of the MDV powertrain could tackle the first issue but still strive to kick in the automotive 

market because of the second one. Indeed, a European report produced in the frame of the FP7-funded 

research project INTRASME (Innovative Transport Small Medium Enterprises Support Action), shows 

that price, vehicle autonomy and competition from conventional vehicles are the most important 

reasons for non-adoption of Medium Duty Electric Vehicles (MDEV) [2]. However, some advantages also 

emerge from the report: sustainability, reduced maintenance costs, fuel cost savings and economic 

incentives. A more recent study from Rout et al. [3], which compares Total Cost of Ownership (TCO) for 

various types of ICE, electric and Fuel Cell trucks, highlight that MDEVs are today close to 

competitiveness compared to their Internal Combustion Engine (ICE) counterparts. However, their study 

also stresses out that the competitiveness achievement depends heavily on the mission fulfilled by the 

truck. For example, while MDEV school bus achieve a lower TCO than the ICE version, for refuse truck 

the gap remains important with an increase of the TCO by 25% (about 2.0 £/km for MDEV vs. 1.5 £/km 

for ICE).  

To tackle this issue, a possible contribution is to optimise the sizing of the Vehicle Thermal Management 

System (VTMS) to decrease both CAPEX and OPEX, while preserving the vehicle’s ability to fulfil its 

mission (e.g. refuse collection) for given constraints (e.g. given shift time).  

In an ICE vehicle, the thermal management system consists mainly in a heat rejection loop operating at a 

temperature range between 80 °C and 110 °C for the engine and HVAC pack for cabin heating and 

cooling. For the engine, the components can sustain high temperatures (around 125 °C) without 

dramatic degradation of their performance and/or lifespan, so that the precise control of operating 

temperatures is not an issue [4], the primary role of the VTMS being to avoid engine materials to reach 

their point of failure. Nevertheless, to go further, some authors have assessed the opportunity to 

optimise the VTMS use/design, with for example, Shu et al. [5] or Thomaz et al. [6] optimising the 

coolant flow rates to improve the fuel efficiency. Hence, for ICE trucks, the energy resource is barely an 

issue so that a common sizing approach consists in using extreme weather conditions to design the 

VTMS as no significant impact on the vehicle range is foreseen. The chosen extreme weather conditions 

resulting in a so called “worst case scenario” of course depend on the vehicle duty, manufacturer selling 

strategy, etc. 

For MDEV the challenges are quite different. Indeed, batteries are very sensitive to temperature, and 

present specific thermal needs in order to ensure a good level of performance and lifetime. Secondly, 

power electronics and electrical machines also have specific cooling needs and contribute to the 

available amount of heat to be managed by the VTMS. However, the amount of available heat could be 

                                                           
1 MDV refers to Category N as defined by UNECE standards, https://alternative-fuels-observatory.ec.europa.eu/general-

information/vehicle-types 



3 
 

too low so that the heating requirement of the batteries and of the cabin is met thanks to active systems 

(e.g. electric heaters) resulting in vehicle’s range rapid decrease. Hence, for MDEV, an approach based 

on “worst-case scenarios” raises new issues because of the constraint on energy resource (i.e. battery 

capacity). Indeed, in this case, there could be a benefit to not comply with the setpoint (e.g. battery 

optimal operating temperature) in case of extreme weather conditions to avoid an over consumption of 

electricity and in consequence a significant decrease in vehicle range. However, such a strategy leads to 

a degradation of the battery that results in a decrease of its lifetime and hence to a potential early costly 

replacement. Therefore, for MDEV it could be of great interest to optimise the sizing of the vehicle 

thermal management system to identify the best techno-economic trade-off [7]. 

To highlight the design differences between the VTMS ICE and electric MDV, some references given by 

the MDV manufacturer VOLVO (to which Renault Trucks SAS belongs) are reported in table 1 for a truck 

of 240 kW wheel power. The heat rejected by an electric powertrain is five times smaller than that of an 

ICE with also lower temperature requirements as the cooling duty is for electric components (inverters, 

motors, battery, etc.). Assuming an ambient temperature of 30 °C, the specific cooling power to be 

achieved by the VTMS of the MDEV is three times higher than that of the diesel counterpart. At fixed 

vehicle architecture, or space claim for the cooling system, this can lead to either packaging infeasibility, 

or to unreasonable power needs for the fan system. This has to be managed either by technology 

installation (active cooling systems, multi temperature cooling architectures), or by questioning the 

customer needs, hence the sizing methods, or both, which calls for implementing optimisation approach 

in the decision-making procedure. 

Table 1 Vehicle Thermal Management Gap Analysis for a 240 kW wheel power truck (Source: Volvo 
group) 

MDV Diesel Battery 

Heat rejection of the VTMS [kW] 150 30 

Cooling target temperature [°C] 100 25 - 50 
Specific cooling power at Tamb = 30°C 

[kW/K] 
2.1 6.0 

(for target at 35°C)  
Thermal reactivity Fast (<10min) Slow (<1h) 

Heating power [kW] - 2.5 

 

The optimisation of the sizing of EVs’ VTMS represents in general great challenges as reported in many 

studies (e.g. [8] for an approach based on weight, [9] for one based on cost and energy efficiency) 

compared to the work to be performed for an ICE.  

A first challenge is to deal with the impact of weather conditions on vehicle autonomy as reported in 

many studies on battery electric vehicles, which trends also stay true for MDEV. Iora et al. [10] find that 

the auxiliary power required for cabin and battery heating during winter reduces the vehicle range by as 

high as 44%. Hao et al. [11] propose a deep analysis on real-world available data of nearly 200 electric 

vehicles circulating in the city of Beijing. Results show that when the ambient temperature is higher than 

28 °C and lower than 10 °C, the electric consumption of the battery increases by 2.3 kWh/100 km for 

every 5 K change in ambient temperature. Reyes et al. [12] explore the effect of winter over electric 

vehicle autonomy. Below -15 °C, vehicle performances are highly affected by heating system operation 
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as expected, whilst for temperatures between the latter and 20 °C, travel range has a linear dependence 

with ambient temperature. On their side, Wang et al. [13] find a U-shape relationship which is 

confirmed by the extensive study on the topic performed by Haber et al. [14] based on numerous infield 

study available in the literature and covering various regions and vehicle types. These authors report the 

effect to be higher at lower temperature because of loss of performance of the battery pack which 

effect adds to the demand in heating for the cabin and battery pack itself.  In their review, Ma et al. [15] 

point out that the battery optimal temperature range is 15 - 35 °C. When the battery is operated out of 

this temperature range, it results in the loss of capacity and power and its lifetime drops dramatically. 

This is due to the reduction in ionic conductivity at low temperature, as also pointed out by [16]. 

Furthermore, while internal resistance usually decreases with increase in operating temperature, the 

opposite occurs at high temperature (above 60°C), affecting the available power [17]. In addition, the 

degradation of active material at these high temperatures results in capacity loss. Hence, the battery 

operating temperature is usually limited below 60 °C to prevent any occurrence of chain reaction. Xia et 

al. [18] point out that the factors affecting the thermal behaviour of electric vehicles are extremely 

complicated to model and analyse. Different areas of study are affected simultaneously such as 

temperature, state of charge and state of health of the battery and cabin comfort. Thus, the choice of 

the modelling approach could also have an impact on the obtained final results. These areas are 

interdependent and connected to electrochemistry, heat transfer and electricity transfer as reported in 

[19].  

The Table 2 resumes the ambient temperature impact studies conducted on different types of electric 

vehicles and the type of modelling used. The range loss is extracted from the studies as the difference 

between the maximum range registered during summer driving compared to winter driving. Depending 

on the temperature range analysed, the type of vehicle and the modelling used, range loss is estimated 

to be between 20% and 40% for the worst cases.  

Table 2 Studies conducted on the impact of ambient temperature on electric vehicles autonomy. 

Study Temperature 
range 

analysed 

Type of vehicle and N° Modelling of the 
VTMS 

Highest Range Loss 
observed compared 

to a base case 

Iora et al. 
[10] 

-15 °C to 20 °C Nissan Leaf, 1 Quasi-steady 
backward-looking 

model 

40% 

Hao et al. 
[11] 

-10 °C to 35 °C Personal e-vehicles, 58 Data analysis 
approach 

22% 

Reyes et al. 
[12] 

-15 °C to 20 °C Nissan Leaf, Mitsubishi 
I-Miev, 2 

Data analysis 
approach 

40% 

Tian et al. 
[20] 

-7 °C to 43 °C Nissan Leaf, 1 Experimental 
modelling 

32% 

Al-Wreikat 
et al. [21] 

0 °C to 30 °C Nissan Leaf, 1 Data analysis 
approach 

28% 

Rastani et al. 
[22] 

-30 °C to °40 
°C 

Nissan Leaf, E-Ducato 
Fiat, 1 

Data analysis 
approach 

up to 20% 

Yuksel et al. 
[23] 

-26 °C to 43 °C Nissan Leaf, 1 Data analysis 
approach 

up to 28 % 
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The wide variation in range loss presented in Table 2 is explained by the different driving cycles that 

have been used to conduct the different studies, as the temperature conditions and the used vehicle 

configuration remain almost the same for every study. From this table, it is also highlighted that only 

very few studies are found concerning the impact of ambient temperature on medium duty electric 

vehicles’ performance. The most relevant one performed by Rastani et al. [14] deals with the impact of 

ambient temperature on route planning for electric freight vehicles. From onboard measurements, 

correlations of energy consumption as a function of ambient temperature are identified and used to 

feed different models of optimal route planning at different ambient temperatures. Results show that 

the energy consumption of the vehicle can be increased as high as 54% compared to a mild temperature 

use case in case of extreme weather. However, a major limitation of this study lies in the use of data 

from electric cars applied to an electric freight study, which usage could differ in terms of energy 

demand. To tackle the loss of battery performance due to extreme weather conditions, battery pre-

heating during vehicle charging is an identified solution. For example, Lei et al. [24] were able to achieve 

80% of the performance at room temperature thanks to 15 min of pre-heating of their battery pack for 

initial temperature as low as -40 °C. However, a rapid heat up phase can result in total drainage of the 

battery autonomy [25].  

A second challenge lies in the thermal management of the passenger compartment that can also impact 

the vehicle performance [26]. According to Zhang et al. [27] the usage of electric heaters to achieve 

thermal comfort in the cabin, can lead up to 60 % of exergy loss over the whole system. As mentioned in 

the XERIC project [28], current heating, ventilation and air conditioning technologies (incl. electric 

heaters for the heating phase) reduce the potential driving range of EVs up to 25 %. This range reduction 

is directly the consequence of the lower amount of generated heat by EV motors and batteries 

compared to that available in ICE vehicles. Hence, several studies aim at decreasing the required amount 

of energy to achieve cabin comfort. Schaut et al. [29] introduce a thermal management strategy for the 

passenger compartment of a battery electric vehicle that uses optimal control. They show that 

implementing a model predictive control helps to reduce the energy consumption of the thermal system 

by 20% compared to the standard configuration.  

From these two challenges, it appears clearly the ambient temperature chosen as reference for the 

design step plays a major role. Furthermore, it has to be stressed out that for a manufacturer, it is more 

interesting from economic point of view to have a design that can apply to several locations and truck 

duty whenever possible. Hence, Figure 1 shows the temperature occurrence in three selected towns 

where VOLVO electric trucks are deployed. For the three locations, the largest occurrences are between 

0 and 35 °C. Extreme high and low temperatures present a low cumulative percentage, which means 

that sizing a thermal management system on these extreme conditions could be questioned considering 

the effective vehicle working hours at these conditions.  
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Figure 1. Occurrence of ambient temperature in Sevilla (SEV), Goteborg (GOT) and Lyon (LYS) reference 
cities for MDEV deployment (source Volvo Group) 

This introduction highlights the difference in challenges between ICE and electric MDVs for the design of 

their VTMS. In addition, it is also stressed out that the vast majority of the available literature on EV 

VTMS is focused on electric cars which have clearly distinctive use to that of MDEVs. The optimisation of 

the design of the VTMS is then clearly identified as a possible tool to gain in TCO and then strengthen 

the competitiveness of MDEV whatever the usage. This statement is supported by the recent work 

performed by Corbet et al. [30] on electric city buses which are facing similar constraints as MDEV. From 

data recorded on buses in operation in various cities, they conclude that compared to a testing 

conducted at an ambient temperature of about 24 °C, an average temperature of 35 °C resulted in a 4% 

decrease of driving range while the decrease is of 12% for a temperature of about -7 °C. These authors 

also stress out the need of mitigation strategies to lower the resulting risk in order to foster the 

electrification of vehicle fleet by developing design and control approaches that better take into account 

the influence of weather conditions. 

Hence, this review proposes to walk through the solutions that have been adapted to these 

problematics so far, highlighting different methodologies used on electric cars and how they could be 

reused. In particular, the attention will be focused on the following topics that are inherent to an 

optimisation work: 

● VTMS architecture. A thermal management system can be based on passive or active 

architecture, depending for example on the presence of a component that could be controlled 

in order to produce cold water (e.g., a heat pump).  
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● Design optimisation problem formulation and solving. Although many works in the literature 

discuss the best approach to optimise the design of electric cars VTMS they cannot be directly 

transposed to MDEV because of the specific constraints and usage that are significantly different 

from that of electric cars. For example, concerning route scenario definition, no standardized 

cycle does exist for trucks because of the wide range of possible missions (urban freight, long 

haul, refrigerator, refuse collection). Methodology to create such scenarios needs to be 

discussed as they are mandatory inputs to perform an optimisation of the design.  

 

● Control phase. As discussed in the introduction, MDEV VTMS design trade-off could result in not 

fulfilling components temperature setpoints to some extent. An efficient control strategy can 

help in reducing the impact of these periods and hence prevent components performance 

degradation. 

2. THERMAL MANAGEMENT SYSTEM ARCHITECTURE  

2.1. GENERAL OVERVIEW 

Figure 2 shows which sub systems are concerned and the general boundaries of temperatures that must 

be respected to keep components working in the optimal range. The overall thermal management 

system of medium duty electric vehicle can be split in two sub-thermal management system: 

• The cooling architecture, which defines the loops arrangement in the vehicle to either cool 

down or heat up components when needed.  

- The architecture can then be considered as an “active” or “passive” system. This 

terminology displays the solution adopted by the manufacturer to handle the cooling 

architecture through technologies that can either allow to go below ambient 

temperature or not (e.g., by introducing a heat pump). 

- The cooling architecture then connects the powertrain components (which contribute to 

part of the heat rejected) and the cabin (which acts on the overall system as a consumer 

of heating/cooling energy). 

• The battery pack thermal management, which needs particular attention in terms of 

temperature levels as the range of the vehicle depends on it.  

This sub-division is a concept that can be applied on any electric vehicle thermal management system. 

However, for medium duty vehicles, the challenge is slightly different from a common electric car since 

not only cabin comfort and optimal component temperature must be achieved but also respect the 

specific mission the truck has to achieve each day which influence the choice of the architecture.  
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Figure 2. Medium electric duty vehicle thermal management system with temperatures boundaries.  

Medium duty electric vehicles have to endure different tasks that require precise design features so that 

thermal management system should be designed to endure and perform well at different ambient 

temperatures, considering one model can be delivered in different cities around the globe. As 

developing electric trucks thermal management system is quite new, the state of the art relies mainly on 

technologies that have been developed for electric cars. 

In 2010 the National Renewable Energy Laboratory (NREL) suggested that thermal management should 

be viewed at vehicle scale not just as a partial subsystem. The integrated system will provide an 

approach to evaluate combined heat loads and support an opportunity to develop analysis methods to 

quantify the transient and continuous heat loads of individual components and system under a wide 

range of operating conditions. This is confirmed by Bennion et al. [31] work on synergistic benefits of 

combining cooling loops in vehicles for all the components. They suggest that thermal management 

should be viewed at large vehicle system not just as a partial subsystem. According to these authors, to 

achieve a relevant strategy, it is necessary to develop analysis and methods to quantify the transient and 

continuous heat loads of individual components and system under a wide range of operating conditions. 

Their idea is to consider the vehicle thermal management of a single component as a degree of freedom 

for an integral system constantly put under thermal charges. Several studies have conveyed that looking 

at the whole vehicle and not just the partial subsystem shows more interesting results. Even if this 

approach makes the modelling approach more complex, the accuracy of the results is higher compared 

to partial subsystem modelling [32], [33], [34] and a potential cost reduction and performance 

improvements for thermal management system is observed.  

2.2. BATTERY THERMAL MANAGEMENT 

Keeping the battery at optimal ranges of temperature is essential for an electric vehicle in order to avoid 

runaways or premature degradation. Moreover, during the charge and discharge phase uneven 

temperature distributions could lead to specific cells degradation. Nowadays, the capital cost of a 

lithium-ion battery for electric vehicle usage is still over 150 €/kWh [35], thus it represents almost a half 

of the selling price of the electric vehicle itself when installing 69 kWh as in a medium duty electric truck. 

Battery thermal management (BTMS) is thus fundamental in order to operate in the good range of 
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allowed temperatures and use the cells at their fullest potential. Following the current state of art, the 

battery thermal management approaches can be summarized as follows: air cooling/heating, liquid 

cooling/heating, and Phase Change Material (PCM) cooling. 

● Air cooling is a widely used solution as it guarantees a good temperature mitigation compared to the 

other technologies and it is the cheapest. Zhao et al. [36] deeply treat air cooling as a strategy for 

battery thermal management, pointing out that lightweight and high compactness makes it a 

preferable choice over the other thermal management solutions. However, as Rao et al. [37] show 

that air cooling cannot guarantee a temperature uniformity over the battery, leading to premature 

degradation of battery cells over the long run.  

● A liquid based system presents higher heat transfer coefficients compared to air-based systems and 

requires also less power to circulate the coolant (pump vs. fan). Wu et al. [38] assess the 

performance of a battery thermal management with a direct contact between the liquid coolant and 

the surface of the battery, allowing the system to be compact. As it can handle bigger heat 

capacities, this methodology is the most adopted for duty electric vehicles. Various possibilities of 

improvements are found in the literature mostly focused on the optimisation of the thermal 

resistance between the coolant and the battery cell (e.g. Chalise et al. [39] work on coolant fluid 

velocity).  

● PCM can be employed as a passive thermal management system, buffering high operative 

temperatures and represent an innovative way of cooling the battery back using liquid-solid state 

phases [40]. Bai et al. [41] propose to overcome temperature uniformity issues with a composite 

PCM/cooling water plate thanks to which they manage to limit battery maximum temperature 

during the charge/discharge steps. Jaguemont et al. [42] illustrate an example of combining PCM 

cooling with the aforementioned systems showing that the benefits of both could lead to a better 

control of the uniformity of the temperature over the battery pack. PCMs are easier to use, more 

efficient, and more compact than active cooling systems. However, an additional active cooling 

system might be required to charge the PCM. 

As they generate much larger power output when driving or when demanding charge, medium duty 

electric vehicles generally generate more heat and consequently the need for air or liquid cooling is 

bigger. This led to new challenges in terms of system sizing and technology choice. Thermal runaways 

could occur more often due to high rises of temperature over peak usage, which could be repetitive due 

to the type of usage of the vehicle (freight missions will be discussed in the next section). Excessive heat 

cumulation and over usage out of peak-performance boundaries could lead the battery pack to 

undesirable degradation and, consequently, to shorten battery pack lifetime. Battery aging is a 

recognised phenomenon in the automotive world, causing fast capacity fading. It has been 

demonstrated that aging is a factor highly dependent on the temperature of the battery cell. Redondo - 

Iglesias et al. [43] present two formulations that correlate  both mechanisms of degradation (cycling and 

calendar) to temperature, state of charge and depth of discharge. The results presented are re-usable to 

study the effect of degradation over the usage of battery in a medium duty electric vehicle. According to 

Afzal et al. [44], a realistic heat transfer model could help understanding better the degradation 

mechanism of a lithium ion battery by correlating its aspect ratio and the volumetric heat generation. 

Over charging and over discharging the battery leads to critical behaviour that reflects negatively on to 

the performances of the battery itself. 
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Considering the impact that aging could have on the cost losses over the capital price of the battery, 

Andrew Thompson [45] introduce different ways of associating an economic assessment to the 

mechanism of degradation. The battery degradation cost is assumed to vary in time since it is associated 

to a phenomenon (calendar aging) that varies the total capacity available on the battery during its 

usage. However, so far, cost calculation has only been focused on the number cycles the battery could 

do during its lifetime. Considering these cost factors, they conclude a good battery thermal 

management system should minimize the time spent at high SOC and the general temperature rise. Hao 

et al. [46] illustrate an economic analysis over the Beijing market to analyse battery costs installation for 

electric vehicles. By analysing the battery lifetime of the battery and their actual cost on the market, 

they conclude that electric vehicles are more cost competitive than ICE. This competitiveness can be 

further enhanced by the cost savings expected from the development of batteries. Coupling 

methodologies such as the one proposed by [47] for driving cycles and [48] for battery degradation, 

could lead to better results compared to reality. As mentioned by Birkl et al. [49], these methodologies 

must be compared to data coming from real users driving in cities to validate results. Thus, Multiphysics 

simulations are also requested to recreate the physical system of the vehicle when data is not 

accessible. 

2.3. IMPACT OF THE DESIGN OF COOLING/HEATING CIRCUIT AND HEAT-PUMP USE 

In EVs, to heat-up the components and the cabin of the vehicle, one of the most applied and viable 

solution is to use electric resistors, which have the advantage of being easily controlled with a low 

thermal inertia. The Positive Temperature Coefficient (PTC) heaters are the most commercially used and 

they are presented in this study for both passive and active thermal management architecture. As for 

ICE, active air conditioning system can be used for cooling duty, both systems being part of the HVAC.  

However, as shown on Figure 3, HVAC represents a significant share in the overall EV energy 

consumption contrarily to the ICE case.  

 

Figure 3 Comparison between different sources of power consumption in EV and ICE vehicle [50].  

To decrease HVAC electricity consumption, heat pump solutions have been explored with several works 

concerning electric cars discussing various approaches to install such component. For example, S. 

Chowdhury et al. [51] have presented a new concept of thermal management architecture that satisfies 

diverse thermal and design needs of the auxiliary loads in the electric vehicle. The approach concerns an 

evaluation of the thermal charge on each component by considering the presence of a heat pump as 

well. Benefits can be observed in terms of range improvements, compared to a system which does not 
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have the same technology. De Nunzio et al. [52] present an optimized thermal management system that 

includes an active cooling system operated by a heat pump for the cabin heating/cooling. A reduction of 

11% for energy consumption is observed compared to a reference system without heat pump. 

Increasing driving range and ensure a thermal comfort in the cabin are proven to be feasible by relying 

only on the heat pump cooling system. Zhang et al. [53] also show further studies that have been 

conducted on VTMS. Thermal losses from batteries and motor are used to heat up a coolant liquid along 

with the installation of a heat pump in the system in order to avoid drops in efficiency during cold 

weather for the heat pump.  

Replacing common electric heaters with heat pump is a valuable solution for electric trucks in terms of 

energy savings since the higher demand of heat requested by the vehicle compared to electric cars. 

However, one of the most common issues of heat pump is the loss of efficiency at low ambient 

temperatures. Jeffs et al. [54] analyses the behaviour of a heat pump installed on an electric vehicle at 

low temperatures, providing a viable solution to avoid COP losses on the heat pump installed using heat 

rejection of power train components. Several low temperature scenarios have been analysed, leading to 

an average energy saving of 14.8% compared to a system with an electric heater installed.  

The introduction of VTMS architecture involving a heat-pump has made it all the more important to 

consider the number of cooling/heating circuits. Indeed separated loops increase the flexibility in terms 

of temperature ranges control but at the cost of increased complexity. However, single cooling loops 

seemed inappropriate to handle problems related to electric machine and electronics integration, 

especially for optimum working points connected to oil and charged air cooling. The same thermal 

management solutions have been applied on electric vehicles, pointing out the differences in terms of 

components to be installed for the thermal management [55]. The different temperature levels lead to 

unwise design choice for heat exchangers and fan size. Thus, the installation of multiple-loop circuits to 

satisfy all the thermal requirements introduced by the electronics has been addressed as a viable 

solution. However, this could increase the complexity of the system and the weight of the overall 

system, impacting negatively the range of the vehicle and its performances [56]. Table 3 resumes the 

proposed architecture in various studies involving heat-pumps.  

Table 3 Studies conducted on the VTMS implementation with a holistic view over the system. 

Author Number of 
loops  

Type  

of vehicle  

Components considered 

Tian et al. [20] 2 (BEV) Powertrain, Battery 

Bennion et al. 
[31] 

3 Toyota Prius 
(PHEV) 

Powertrain (EV + ICE), 
Battery, Cabin and 

Architecture 
Chowdhury et al. 

[51] 
3 Fiat 500e 

(BEV) 
Powertrain, Battery, 

Cabin and Architecture 
De Nunzio et al. 

[52] 
3 Fiat 500e 

(BEV) 
Battery, Cabin and 

Architecture 
Scholl et al. [57] 2 Renault Twizy Powertrain, Battery, and 

Architecture 
Leighton et al. 

[58] 
3  Mid-sized 

electric 
vehicle 

Powertrain, Battery, 
Cabin and Architecture 
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Rana et al. [59] 4 Personal 
vehicle 

Powertrain, Battery, 
Cabin and Architecture 

Tian et al. [20] investigate a new thermal management system to look at thermal comfort, battery and 

motor cooling as a whole interactive system. They state that very limited examples can be found in the 

literature for VTMS design and performance analysis for EV.  

Rana et al. [59] pointing out that most studies are conducted for either cooling mode or heating mode, 

propose a novel 4-loop thermal management system that handles cooling and heating introducing a 

heat pump in the system. The simulations are conducted over two stages. The first stage simulation 

operates to improve the battery thermal management system and the second one aims to have a look 

onto the impact on overall system coefficient of performance (COP) under typical thermal load 

conditions. The base case used for validation of the model is a set up in an in-house calorimeter 

laboratory. Results show that during peak loads, the architecture simulated has a COP 50% higher than 

the base case. Reheating using waste heat recovery from the water condenser is the key feature of their 

system.  

Scholl et al. [57] propose an innovative thermal management architecture considering the influence of 

cutting-edge technologies such as thermoelectric materials and phase changing storage units. The goal is 

to specify an optimized strategy proving that the energy demand of the system can be reduced by 

choosing the strategy that fits well the integrated system. Solutions such as phase change materials and 

heat pump implementation allow the user to have a flexible and efficient thermal management system 

that can work under different climate conditions and usages.  

3. VEHICLE THERMAL MANAGEMENT SYSTEM OPTIMISATION  

Two objectives can be addressed when optimising an energy system. A first one, also called “optimal 

control” consists in using optimisation approaches to control a given configuration to minimise again a 

cost. In this case the characteristics of the components have been already determined with a sizing 

method, the only decision variables being on/off and load factor of each component. The second one, 

called “design optimisation” consists in defining the “best” combination of components (incl. 

consideration on presence of the component or not and its sizing) to deliver a service at the lowest 

“cost”. The cost could of course be a techno-economic cost like the TCO but also an environmental cost. 

3.1. VTMS CONTROL OPTIMISATION 

Control of energy VTMS represent a fundamental step for an optimal usage of the vehicle during its 

lifetime. Zhang et al. [53] and Huang et al. [60] in their review, present a way to categorize the type of 

control introduced in literature for hybrid cars energy management, dividing them into rule-based and 

optimisation-based. Furthermore, on-line and off-line approaches need to be defined. For off-line 

optimal control, the algorithm optimizes the system knowing beforehand the whole driving cycle of the 

electric vehicle. On-line optimal control algorithm adapts its parameter step by step without any 

determinist information on the cycle being performed at the cost of increased computing work. 

According to [61] who discuss the different types of control for Hybrid Electric Vehicle, rule based 

energy management has been widely used because of its simplicity but suffer from various drawbacks, 

for example the dependence on expert knowledge for the deterministic configuration. This can be 
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partially solved by adding fuzzy rules. This is also underlined by Wei et al. [62] who state that rule based 

energy management relies on the driving cycle on which they have been calibrated. In consequence, 

during real-time assessment these rules are not continuously adapted to real driving conditions 

potentially limiting the achieved performance. These authors also underline that the thermal domain is 

often not considered in optimisation problem for electric vehicles, leaving room for improvement.  

To go beyond the well-established rule-based approach, Model Predictive Control (MPC) and learning-

based management can result in significant gain despites the specific challenges to be tackled. For 

example, Fu et al. [63] introduce an energy management strategy for a light duty hybrid commercial 

truck. Their methodology is based on a two-point boundary optimisation problem in order to consider 

the evolution of the state of charge of the battery and the power sources coming from the internal 

combustion engine. The optimal control has been compared to a normal rule-based control already 

implemented on the vehicle. Results show that the energy consumption of the vehicle over a predefined 

cycle has been reduced by 6.1% compared to the ruled based strategy. 

3.1.1. MODEL PREDICTIVE CONTROL (PHYSICS DRIVEN APPROACH) 

Model Predictive Control is based on a dynamic model of the system to be controlled that will be used 

to estimate the system behaviour over a given time horizon (a few type steps in general) and hence 

identify a reference trajectory that minimize a cost function considering several inputs (e.g. 

temperature, speed evolutions in the next time steps). Once this trajectory identified, the system 

configuration for the very next time-step is fixed and the time horizon window will shift forward of one 

time step. Hence, MPC requires the development of ad hoc models that simulate the physical behaviour 

of the thermal system: dynamic responses, components physics and all the phenomena involved during 

vehicle usage (heat transfers, electrochemistry, electricity, mechanics, components aging [48], etc.). 

Those models result mainly in a MINLP (Mixed Integer Non Linear Programming) formulation [64]. For 

example, in the case of VTMS a non-linearity occurs because of the energy balance of the fluid which 

involves the multiplication of two decision variables: the mass flow-rate and the fluid temperature. 

MINLP optimisation problem are hard to solve potentially resulting in a bottleneck to apply MPC [65].  

He et al. [66] demonstrate the gain that can be achieved with an MPC in the case of city buses. They 

achieve energy savings of about 6% compared to rule-based control. They conclude also on the 

necessity to have an MPC that reflects appropriately the load variation (in their case passengers getting 

on and off the bus) as it impacts significantly the controller ability to achieve the expected gain. Three 

stochastic forecast approaches are assessed: RBF-NN (radial basis function neural network), Markov 

chain and Monte Carlo, the first one performing slightly better. Vatanparvar et al. [50] report as well the 

importance of cabin climate control and propose solutions to manage the HVAC power in order to 

increase the battery lifetime and the electric vehicle range. To tackle the issue of MINLP formulation, 

Ferrara et al. [67] choose to use a linear approximation close to the current operating point (e.g. for 

variation of the battery state of charge) to speed up problem convergence in the case of optimal control 

of an heavy duty fuel cell vehicle. With their approach, they manage to get close to the minimum 

reference consumption determined off-line (only 1.5% above). They also point out the limitations of 

their work by highlighting that it would be of great interest to include stochastic speed prediction 

(assumed perfectly known in their presented work). Lopez-Sanz et al. [68] underline how powerful 

model predictive control could be for cooling circuits control inputs. A reduction of 30 % in costs 

associated to thermal management application is shown by using a model predictive approach over a 
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standardized control strategy. This application has been developed for plug-in electric vehicles, however 

its flexibility allows it to be applied for other cooling circuits (e.g., full electric vehicles). Puma-Benavides 

et al. [69] report several optimisation and control methods currently under development for range 

extensions of electric vehicles. They point out the importance of developing new methodologies in order 

to obtain satisfactory topologies of the energy and thermal management system of the vehicle, 

considering different objective functions (environmental, costs, energy performances, weight, etc.). 

Given an optimal trajectory, real time controller can be derived and energy minimization as well as 

component lifetime can be drastically improved. According to them, multi-level optimisation 

frameworks can be envisaged to address all the problems conceiving an energy system: sizing, design 

and controlling. Li et al. [70] show how sizing and control can be coupled through optimisation methods 

and how the sizing phase is a key for optimal control which can result in significative improvements 

compared to separated solving. Several authors (e.g. [71], [72]) explore the possibility to use Dynamic 

Graph Model for MPC of complex system coupling electric circuit and thermal loop. They conclude 

positively on the relevance of this approach but also stress out again that the non-linearities have to be 

carefully handled.  

From this rapid survey on MPC, no major issue on its application to MDEV does arise and the 

approaches developed for electric cars (or hybrid vehicle) or can be seen as a solid starting point. 

Nevertheless, the extreme sensitivity of MPC to prediction quality (future vehicle speed, load, etc.) 

support the necessity to have specific research work to better model these inputs for MDEV cases.  

3.1.2.  DATA DRIVEN APPROACH 

As discussed in the MPC section above, a highly performant thermal management control requires 

detailed models and the supervision of several parameters which can result in tool with inadequate 

computation time for decision making. As an alternative to physical model simplification, artificial neural 

networks and machine learning in general are often used nowadays to model the characteristics of the 

thermal management system operation by using available data on driving cycles. These methods are 

becoming more and more popular thanks to the generation of important dataset with on-board sensors.  

Park and Kim [73] illustrate an improved control methodology for electric vehicles that rely only on 

artificial neural network (ANN) model, without using any specific physical model to describe the thermal 

architectures. The dataset used to train the ANN comes from repeated drive cycle sampled with a time 

step of 5 sec, retrieving essential information of the VTMS while driving such as power inputs of the 

EWP (electric water pump), fan, and compressor, coolant flow rate, coolant temperature, battery 

temperature, vehicle speed, battery current, and AC switch operating status. The optimal VTMS 

scheduling is achieved by using two objective functions reflecting the usage of cooling/heating power as 

well as the optimal range of temperatures for components. Results show that ANN could estimate the 

same physical variables as the corresponding physical model with less calculation power, attaining 

positive results in terms of energy efficiency. Afzal et al. [74] use deep neural networks to predict the 

ability of a battery thermal management system to dissipate the heat based on a set of six operational 

parameters. These methodologies could be replicated to improve the capability of battery thermal 

management system, coupling with an online optimized control. In order to face the consumption 

coming from the air conditioning of the electric vehicle, Engel et al. [75] propose to use machine 

learning to predict external disturbances that could affect negatively the performance of the air 

conditioning system, impacting then the overall consumption. Results show that these methods perform 
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better than normal PI control currently implemented on vehicles. Tang et al. [76] show how to 

implement a machine learning model in order to performance on liquid-cooled battery thermal 

management for electric vehicles. A lot of experiments are required to present a full analysis of liquid 

cooled based battery thermal management system. The model presented based on particle swarm 

optimisation is shown as a valid alternative in order to predict performances by considering a set of 

operating conditions and drastically reduce the number of experiments to be conducted.  

3.2. MDEVS VTMS DESIGN OPTIMISATION 

At the difference of control optimisation, design optimisation implies to decide whether a technology 

will be installed or not from a given portfolio and to size it. This decision is achieved by minimising a cost 

function over a given period of use. In the case of MDEVs, considering the impact of weather on the 

system performance, the estimation of the performance over a year seems to be the minimum 

appropriate period. As for control, the minimisation of the cost function implies to develop an 

appropriate model to represent the physical behaviour of the system. However, because the time 

window during which the model has to be solved to make a decision is significantly longer than for 

control, the model has to be kept as simple as possible to avoid too long computing time while 

preserving enough complexity to simulate appropriately the dynamic constraints of the system for 

example (e.g. ramping up and down).  

Different methods for sizing have been introduced for new generation vehicles due to the higher 

complexity of a hybrid/full electric system compared to a normal internal combustion engine vehicle. 

Most of them are mainly related to the drivetrain, as it is the primary source of propulsion for the 

vehicle and thermal management had not been recognized yet as an essential element for energy 

efficiency improvements [70]. Table 4 resumes some references focused on optimal design for thermal 

management and drivetrain, considering data pre-treatment for the mission carried out. 

Table 4. Strategies presented for component sizing optimisation 

Reference Data Pre-
Treatment – 
Mission 
definition 

Application Type of 
objective 
function 

Strategy Used 

[62], [77] No Hybrid Vehicle Economic Drivetrain optimisation, 
Thermal Management 
optimisation 

[78], [79] Yes Hybrid Vehicle Economic, 
Environmental 

Drivetrain optimisation 

[9], [80], [81] No Full Electric/ 
Hybrid Vehicle 

Economic, 
Environmental 

Thermal Management 
optimisation 

[52], [82] Yes Full Electric/ 
Hybrid Vehicle 

Fuel 
consumption 

Single Component 
optimisation 

[83], [84] Yes Hybrid Vehicle Fuel 
consumption 

Drivetrain optimisation 

[85] No Hybrid Vehicle Fuel 
consumption 

Drivetrain optimisation 

[86] No Hybrid Vehicle Temperature 
range 

Thermal Management 
optimisation 

[57] No Full Electric 
Vehicle 

Fuel 
consumption 

Thermal Management 
optimisation 
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All these works are featured with the complexity introduced on working conditions of electric vehicles. 

Models are becoming more complex and synergies between components behaviour are being 

considered as an important part for electric vehicles manufacturing. Sizing components considering 

these aspects is fundamental in order to achieve a global optimal design solution. For example, Kulikov 

et al. [87] have proposed a sizing method that would find the best trade-off between engine and electric 

battery sizes for hybrid vehicles. A set of maps indicates fuel consumption and electric energy 

consumption, giving the possibility to the user to choose the best combination of components to install 

on the vehicle following their specifications. Given such a graphical instrument make it easy to size 

vehicle components. However, no solid optimisation approach is involved, the decisions relying only on 

worst case scenarios. Saha et al. [88] highlight the importance of new thermal management system 

architecture design by reviewing the typical approaches (worst case scenarios mainly) that have been 

used so far for vehicles component sizing. Their conclusions look into the development of more 

sophisticated models as it is fundamental to embrace challenges introduced by future thermal 

management systems. Instead of designing the thermal management system for extreme hot conditions 

with steady state, the new approach is to design it for transient drive cycles to capture time-based warm 

up and cooling behaviours. Huang et al. [60] list various methods for component sizing, categorizing 

them in three branches: experience-based design, equivalent calculation based sizing and optimisation 

based sizing. As multiple aspects of physics must be considered when working with complex apparatus 

such as thermal management of an electric or hybrid vehicle, the former methodology has been 

reckoned to be the more functional as it can handle easily every possible solution that could be found 

through one single formulation of the problem. 

As the number of technologies installed on a vehicle increases (hybrid, fuel cells, heat pump, 

thermoelectric materials, etc.), the solution space tends to be wider and wider with multiple complex 

solutions being able to fulfil the design requirements. For this reason, the application of optimisation 

methods to find the best design of a thermal management system has to be regarded as necessary to 

avoid any preconception bias. Hence, operational research and multi-optimisation methodologies could 

give a huge hand solving these problems. Following those methodologies, a basic linear optimisation 

problem for system sizing is defined as follows: 

            (1) 
 

                                 (2) 

Where           is the objective function. The optimal VTMS installation is obtained by the 

resolution of this optimisation problem. A, A’, b, b’ are the sets of constraint matrices given by the 

problem, x is the vector of the decision variables possibly composed by a mix of continuous and integer 

variables. In problems dealing with energy, the constraints are generally represented by the 

temperature ranges of components, the operational points of components, the maximal heating/cooling 

power that could be delivered or the maximal heat that can be dissipated by the system. The vector of 

decision variable is represented by the cooling/heating power to be installed, which defines the 

geometrical size of heating/cooling components following manufacturers’ requirements.  



17 
 

As a thermal management system presents different components, not only the size of the system can be 

optimised, but also the arrangement of the components in order to find the best architecture among 

the possible existent combinations.  

To deal with this issue, Silvas et al. [77] choose a “nested approach”, introducing a multi-level 

optimisation problem to be solved sequentially, first working on the size and the topology of the energy 

system and then on its control (Figure 4). Their review shows that works concerning size optimisation 

problem on electric vehicles have grown a lot, mostly due to legislative restrictions which have become 

increasingly tight during the last two decades. For the architecture choice and control design problem, 

these two-coordination methods could be resumed as follows: alternating methodology refers to 

architecture choice and its control. First the architecture of the thermal management system is 

optimally designed, then the outcome is used for the controller to be optimally designed. The cycle 

closes with a new optimisation of the architecture following the results of the new controller applied. 

For the nested approach, the solver alternates between optimizing the thermal management 

architecture and optimizing the control until the coupled variables have converged.  

 

Figure 4. Nested optimisation methodology for system design of an electric vehicle [77] 

Wei et al. [62] illustrate a methodology that combines multiple optimisation layers to achieve the best 

trade off in terms of complexity and optimality for the energy management system of a hybrid electric 

vehicle. The topology generation problem selects a suitable architecture among the possible solutions 

proposed to the optimisation problem in order to eventually improve the energy efficiency of the 

system itself during following steps of the nested approach. Once vehicle and drivetrain specifications 

are set, the sizing optimisation problem returns the type of drivetrain expressed in vehicle energy fluxes. 

A relevant fuel consumption decrease is observed overall compared to the non-optimized base case. 

Zhao et al. [85] and Sinoquet et al. [83] propose an optimisation technique to design the powertrain of a 

hybrid electric vehicle based on a bi-level optimisation, for design and control. The powertrain issued of 

[85] optimisation presents an overall 6.5% fuel economy less than the baseline parallel hybrid electric 

vehicle, whilst for [83] it has been of 16.6%. The bilevel optimisation is then compared to the 

methodology used by [84], showing an improvement of computational efficiency (about 10 times 

faster).  

Because of the complexity of the system, the reduction of the optimisation problem to minimising a 

unique objective function might result in partial results.  
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To avoid this bias, multi-objective optimisation has been thoroughly used for battery thermal 

management e.g. recently [89], [90], [91] but to a less extent for optimisation of the whole VTMS. 

Hamut et al. [9] propose an exergo-economic approach in order to assess the magnitude of 

inefficiencies in the hybrid electric vehicle thermal management system. Through a multi-objective 

optimisation (economic and environmental objective defined by a life cycle assessment), they have been 

able to enlarge the spectrum of solutions for design choice according to different objective functions, 

either related to energy efficiency or investment costs. Results have been compared to a normal single 

objective approach, showing great potential for trade off choices for the solutions sets. At the expense 

of costs, the exergy efficiency and the environmental impact could be improved respectively by 13% and 

5%. Introducing multiple objectives turns to be very useful for a wider analysis, however, could be 

computationally demanding. Javani et al. [80] propose a similar approach to [9] based on exergo-

economic analysis of a thermal management system implementing phase change materials. Again, 

multi-objective optimisation represents a valid methodology to assess different key parameters 

influencing energetic and economic performances of the system. As highlighted by Yu et al. [92] for 

battery thermal management optimisation, the complexity of multi objective optimisation has to be 

carefully considered when applying such methods. For example, Da Silva et al. [93] use three criteria, 

battery state of health, driving range and overall mass as objective functions to design the best 

configuration of hybrid energy storage system for EV application. As in the work by Liu et al. [94], they 

stress out the necessity to discuss the approach for final ranking of the multiple optimal solutions 

obtained because of the inherent difficulty to define a unique optimum.  

3.3. DRIVING MISSIONS – ENTRY DATA FOR MODELLING 

To design properly the VTMS, representative driving cycles of MDEV are needed. Reference driving 

cycles, e.g. Federal Test Procedure 72/75, New European Driving Cycle (NEDC), Japanese Cycle 08 (JC 

08), etc. are extensively used to characterise ICE car performance, with a main focus on the fuel 

consumption [95]. However, according to the same authors, this approach can hardly be extended to 

electric vehicles, the vehicle’s autonomy becoming the major point of concern with furthermore a more 

prominent dependence on weather conditions. Furthermore, many works stress out the high probability 

of generating large error when applying ICE cycles to EV (e.g. [96], [97]) and Wang et al. [47] show that 

existing drive cycles are constructed based on vehicles, and these standardized cycles are not suitable 

for electric vehicles as the driving characteristics are different. In consequence, research work has been 

performed to define specific driving cycle to better take into account the effective use of the electric 

vehicle because of the location [95], [98], or because of the use of the vehicle (e.g. Taxi for [47]). These 

authors do also stress out some major limitations in their model that need to be taken into account to 

gain in precision, e.g. ambient temperature evolution, road grade and change in load [95]. The impact of 

load variation is then a direct concern to design MDEV driving cycles. Indeed, MDEVs’ missions are by 

nature strongly different depending on “the body equipment” which could be for instance a refuse truck 

or a refrigerated lorry so that driving cycles have to be created “on demand”. On their side, Rupp et al. 

[99] focus their work on the optimisation of the charging phase of electric buses in order to reduce CO2 

emission, taking into account the variability of electricity costs. For the purpose of this analysis, they use 

real world available data of electric buses currently driving on the road, differentiating 3 scenarios. Each 

scenario is at least composed by a charging phase where the speed of the electric bus is 0. For example, 

a scenario where the bus operates its daily mission after having been charged overnight is shown in 
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Figure 5. The charging scenarios have been analysed to evaluate the carbon impact of the bus taking 

into account the peak energy generation hours coming from renewable sources. 

 

 

Figure 5. Example of a driving scenario for an electric bus [99] 

Finesso et al. [100] present a study focused on the optimisation of the powertrain of a hybrid electric 

vehicle from a cost and layout point of view. The performance has been evaluated over a two-month 

driving cycle of a heavy-duty vehicle, and the representative values of the mission (road freight 

transportation) are respectively the duration, the average velocity, the max vehicle power and the total 

energy demand. This mission allows the user to perform a sensibility analysis over different varying 

parameters of the vehicle itself. A typical driving cycle can be easily evaluated and replicated to work 

out thermal or electric model of the system, since these values are not directly correlated to any 

thermal management system or powertrain. Ferrara et al. [101] point out how literature lacks energy 

analysis of electric vehicle that takes into account several driving cycles for the design optimisation, 

making these strategies less robust for post analysis or even application on real vehicles. Their work is 

based on an optimisation strategy applied on over 1750 h of real-world driving data including altitude, 

speed, vehicle mass and duration. However, such amount of data, when used for simulation and 

physical analysis, could lead to inefficient time usage for simulation as the diversity and the 

interdependence between type of data are inevitable (e.g., vehicle driving conditions influence the 

thermal losses of electric components). Furthermore, for design purposes, vehicle performances should 

be evaluated over a year of driving, and in some cases, over its lifetime so that the dataset size is clearly 

an issue to solve the optimisation problem. 
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To tackle the problem of tailored driving cycles for MDEV and the resulting possible high computing 

time, a possible solution consists in creating typical representative periods that would represent specific 

missions according to the type of MDEV under study. According to Hoffman et al. [102], time series 

clustering is one of the most used approach in the energy domain, which is confirmed by several works, 

e.g. [103], [104]. When processing a time series aggregation for vehicle route definition, the computed 

representative periods have to reflect the changes in weather conditions but also the changes in 

vehicle’s route. The quality of the aggregation heavily depends on the quality of the data more 

particularly concerning their representativeness of real operating conditions. Data is more and more 

recorded through sensors which are directly installed on the vehicle and operates during their driving 

cycle, a first phase of data cleaning and filtering is essential as it permits to spikes out noises and peaks 

that could later result into nonphysical effects for the driver input data and the analysis of the thermal 

management system [105]. Once the input data is cleaned, the general time series aggregation aims to 

merge a set of data periods into groups, and each period have to be as similar as possible to the data 

group assigned. The group then is represented as a single period. The single period is the so called 

“typical period”, which could be a day or a week following the user decision to represent a certain time 

span. Several algorithms are proposed and studied in literature. Teichgraber et al. [106] present a study 

where different time series aggregation algorithms are presented, highlighting the fact that in the last 

decade feature-based merging methodologies are used more and more by researchers for data input 

reduction of energy models. 

Amongst them, the most used algorithms are k-means, hierarchical and k-medoids. The choice of the 

algorithm mostly depends on the difference in magnitude of the dataset treated and the repeated 

patterns that can be observed. Kotzur et al. [78] analyse k-means, k-medoids, and hierarchical clustering 

with medoid representation on an energy system optimization problem and show that the selection of 

aggregation algorithm has a little impact on the best system design. However, they stress out that the 

optimization error brought on by time series aggregation largely depended on the system being 

optimized. They contend that it is crucial to assess clustering techniques separately for the type of 

energy model analysed. To the authors’ best knowledge, the application of such methodologies for 

MDEV’s VTMS optimisation remains limited as today. For example, Smith et al. [107] provide an example 

of these applications to generate a relevant dataset that correlate the urban cycles operated by electric 

trucks and the degradation of the battery. They explore the possibility of reusing available data of 

electric vehicle fleets circulating in cities in order to retrieve daily driving cycles to be used for energy-

based simulations and optimize the size of the battery installed on the vehicle. Driving data are 

clustered into three specific patterns to represent the overnight and day charging: isolated commuting, 

work-related driving, and social or recreational driving. Then, a battery size optimisation problem is run 

and results compared to a case with only overnight charging scenarios. The results show that reusing 

real available data to build overnight and day charging scenarios could lead to much better results, as 

the battery size storage has been decreased by up to 40 % without loss of functionality. 

The generation of appropriate scenarios to reduce the size of the problem to optimally design MDEVs’ 

VTMS is identified as one of the major challenges to be addressed in the future. The research work to be 

performed is twofold: 1) to generate the needed data with an adequate diversity to represent the 

various climates, missions etc. of MDEVs and 2) identify the proper classification methodologies to 

generate the representative period and characterise the generated error.  

4. CONCLUSIONS 
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The recent developments for vehicle thermal management are discussed in this review with a focus on 

their application to medium duty electric vehicles. While the thermal management at component scale 

is of course of importance, the authors prefer to highlight the challenges in mutual interaction and 

operations, having a holistic view of the system being the core of this review. Future developments are 

moving toward lighter and sophisticated thermal management systems that could work in synergy 

respecting optimisation paths. Thermal management architecture conception could be divided in three 

main creation parts: sizing, designing and controlling. As it has been shown through the substantial 

literature in this review, several approaches have been proposed for normal electric vehicles, leading to 

interesting results that could improve the efficiency of the whole system. 

However, medium duty electric vehicles work under different conditions and current methodologies of 

thermal management conceiving still reflect old solutions applied on ICE vehicles. A possible way to 

solve this issue, would be to transfer approaches developed for electric cars to electric trucks. However, 

the strong differences in missions/driving scenarios must be carefully considered as they will drastically 

change the way of conceiving thermal management architectures for medium duty vehicles.  

As for electric cars, sizing the thermal management system of medium duty electric vehicle thanks to an 

optimisation approach seems mandatory to achieve robust and efficient design, considering the 

complexity of the system and of the constraints to be taken into account (e.g. battery ageing, autonomy, 

available space, weight, etc.). The review highlighted the importance of the objective function definition 

and thermo-economic approaches can be seen as the minimum standard as today. The inclusion of 

other criteria, more specifically to quantify the environmental impacts, has also been explored but 

requires extended optimisation methods and the development of specific methodologies to score the 

various optimal configurations obtained with a multi-objective optimisation. Once an option of sizing 

has been picked up, the design phase through multi-physics simulation will help see as a first approach if 

the results in terms of autonomy and performances are better than an established base case. 

Furthermore, once the sizing block has been worked through, an optimized real-time control over the 

topology could be applied. This methodology is usable for any case-scenario related to medium duty 

electric vehicles (refuse truck, urban cycle, transportation, refrigeration, etc.). This approach could be 

referred, as Wei et al. [62] and Silvas et al. [77] to an alternated optimisation approach or a nested 

optimisation approach. 

Few nonetheless important conclusions can be pointed out for the research community working actively 

on these topics:  

 Heat pump. This technology is a clear opportunity to efficiently manage heat and cold 

generation in medium duty electric vehicles, offering large flexibility in terms of installation and 

topology choices for thermal management architectures. They are all the more interesting in 

cold climate to contain the electricity demand replacing advantageously direct electric heater 

for battery heating and cabin comfort while taking advantage from waste heat released by 

power electronic components. However, research work is still needed to determine optimal 

integration strategy and control by using for example advanced thermo-economic approach 

(e.g. exergo-economic analysis) while taking into account MDEV constraints. 

 New approach for MDEV VTMS design. An approach based on an optimisation problem 

formulation can bring significant gain and insights on the VTMS design compared to the usual 

“worst case scenario” one. However, several challenges are identified and need to be addressed 
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with appropriate research work based on the available literature work on electric VTMS 

optimisation. Indeed, because of the great variety of mission that can be fulfilled by a MDEV 

(refuse collection, delivery, etc.) new specific formulation of the optimisation problem need to 

be developed and efficiently solved while taking into account the corresponding MDEV techno-

economic constraints (needed minimal autonomy to fulfil the mission, economic model through 

the obtained TCO, etc.). This implies to find the appropriate trade-off between model 

complexity and computation time. Time series clustering could help in reducing the problem size 

as for other energy problems but specific challenges arise and are identified in the present 

article, the most important being to efficiently embrace the specificity of the MDEV mission and 

the weather conditions efficiently in the obtained clusters.  

 New approach for MDEV VTMS control. Because of the new sizing strategy, optimal control 

becomes even more a challenge. For example, it can help in reducing the negative impact of 

operation beyond or below the recommended temperature for the battery pack. Both MPC and 

data driven approaches are identified as promising as for other energy systems, but will also 

need specific research activities to transpose them to MDEV case. For example, an appropriate 

data driven approach implies to generate a relevant dataset which has to be built from 

experiment and/or simulation covering the various configurations and operating conditions that 

can occur.  
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