S_Covid: An Engine to Explore COVID-19 Scientific Literature - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Communication Dans Un Congrès Année : 2022

S_Covid: An Engine to Explore COVID-19 Scientific Literature

Résumé

This paper introduces S_Covid, an end-to-end unsupervised learningbased question-answering engine for exploring COVID-19 scientific literature collections. S_Covid enables documents exploration for finding relevant research literature that most possibly contains information that can answer a user query. Thus, S_Covid pinpoints sentences out of research papers that can be possible answers to complex COVID-19 related user queries. We conducted experiments on 80,000 COVID-19 related papers collection. The paper shows statistically how the model performs but also through the feedback of real users. It also compares S_Covid with existing search engines addressing information retrieval of COVID-19 scientific literature.

Mots clés

Fichier principal
Vignette du fichier
246_s_covid_an_engine_to_explore_c.pdf (906.53 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04775912 , version 1 (10-11-2024)

Licence

Identifiants

  • HAL Id : hal-04775912 , version 1

Citer

Genoveva Vargas-Solar, Mehrdad Farokhnejad, Ratn Pranesh Raj, Davoud Amiri Mehr. S_Covid: An Engine to Explore COVID-19 Scientific Literature. 24th International Conference on Extending Database Technology (EDBT), Mar 2022, Nicosia, Cyprus. ⟨hal-04775912⟩
0 Consultations
0 Téléchargements

Partager

More