Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions - Équations aux dérivées partielles, analyse
Article Dans Une Revue Journal of Differential Equations Année : 2023

Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions

Résumé

We study the global existence of the parabolic-parabolic Keller-Segel system in $$\R^d , d \ge 2$$. We prove that initial data of arbitrary size give rise to global solutions provided the diffusion parameter $$\tau$$ is large enough in the equation for the chemoattractant. This fact was observed before in the two-dimensional case by Biler, Guerra & Karch (2015) and Corrias, Escobedo & Matos (2014). Our analysis improves earlier results and extends them to any dimension $$d \ge 3$$. Our size conditions on the initial data for the global existence of solutions seem to be optimal, up to a logarithmic factor in $$\tau$$, when $$\tau>>1$$: we illustrate this fact by introducing two toy models, both consisting of systems of two parabolic equations, obtained after a slight modification of the nonlinearity of the usual Keller-Segel system. For these toy models, we establish in a companion paper [4] finite time blowup for a class of large solutions.
Fichier principal
Vignette du fichier
KS-large-solutions-paper1-v6.pdf (363.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03609520 , version 1 (15-03-2022)

Identifiants

Citer

Piotr Biler, Alexandre Boritchev, Lorenzo Brandolese. Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. Journal of Differential Equations, 2023, 344, pp.891-914. ⟨10.1016/j.jde.2022.11.018⟩. ⟨hal-03609520⟩
125 Consultations
131 Téléchargements

Altmetric

Partager

More