Transformation of a heterogeneous acoustic wave equation into a Schrödinger equation to extend the scope of the localization landscape method - 16ème Colloque National en Calcul de Structures
Communication Dans Un Congrès Année : 2024

Transformation of a heterogeneous acoustic wave equation into a Schrödinger equation to extend the scope of the localization landscape method

Résumé

This abstract describes a transformation from a heterogeneous scalar (classical) wave equation to a Schrödinger equation with heterogeneous potential, which allows to extend the localization landscape technique to classical wave equations in 3D for a larger class of fluctuating parameters. That transformation is based on a coordinate mapping, dependent on the fluctuating velocity, and on a similarity transformation. The heterogeneous potential in the Schrödinger equation is an analytical function of the impedance of the acoustic equation. The use of this transformation to design a localization landscape technique for the acoustic wave equation is detailed.
Fichier principal
Vignette du fichier
hal-04611052.pdf (140.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04611052 , version 1 (03-12-2024)

Identifiants

  • HAL Id : hal-04611052 , version 1

Citer

Cédric Bellis, David Colas, Régis Cottereau. Transformation of a heterogeneous acoustic wave equation into a Schrödinger equation to extend the scope of the localization landscape method. 16ème Colloque National en Calcul de Structures (CSMA 2024), CNRS; CSMA; ENS Paris-Saclay; CentraleSupélec, May 2024, Hyères, France. ⟨hal-04611052⟩
23 Consultations
0 Téléchargements

Partager

More